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II. SCIENTIFIC RATIONALE   
 

Inflammation is a complex immune response including not only a rapid response to 
injury and pathogens, but also chronic low-grade inflammation that contributes to the 
pathophysiology of chronic diseases such as cardiovascular disease and diabetes.1-3  
Biomarkers of inflammation, such as C-reactive protein (CRP), can be extremely high after 
injury or in response to a pathogen (> 10 mg/L), however moderate-levels (> 3 mg/L) 
measured in peripheral blood samples have been used as indicators of disease.4  Even with 
the high sensitivity of CRP measurements, and use as an indicator of increased disease risk, 
it is non-specific and the precise role of CRP in the development and progression of disease 
is not known.  Genome-wide association studies in European Ancestry populations have 
identified candidate loci of genetic variants associated with CRP clustered by immune 
pathways and liver metabolic pathways, with the strongest association for a variant at the 
CRP locus.5; 6  In all, the lead variants at all distinct loci explained ~6% of the CRP variance.5  
As such, the proportion of phenotypic variance explained remains small, likely due to trait 
complexity in the epigenome, the influence of environmental factors such as smoking, among 
other plausible explanations.   

 
DNA methylation may contribute to the variation in disease phenotype biomarkers and 

mediate the effects of genetic and environmental factors.  DNA methylation is an epigenetic 
modification characterized by the addition of methyl groups predominantly to cytosines at CpG 
sites and plays a pivotal role in gene expression through promoter silencing.7  Gene-specific 
DNA methylation has been linked to inflammatory markers in previous studies (Table 1).  In 
the largest epigenome-wide association study to date,8 DNA methylation and CRP levels used 
a European population (8,863) as the discovery set and African American population (4,111) 
as a transethnic replication.  This study identified and validated 58 CpG sites located in 45 
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unique loci in whole blood.  The top signal was near the AIM2 gene, and was inversely 
associated with the CRP levels, with other significant associations with CRP for both ethnic 
groups including the PHOSPHO1 gene (identified in an EWAS of incident type 2 diabetes), 
and SOC3 gene (associated with atherosclerosis and increased risk of CHS).  These findings 
were replicated in a separate study of inflammatory markers and DNA methylation that was 
focused on repeated samples from a European ancestry cohort (10 years between sample 
collection).9  A significant association with CRP levels at the SOCS3 locus was also found in a 
EWAS study incorporating four European cohorts.10  A study of CRP-associated DNA 
methylation in 966 participants of African Ancestry (representing 492 sibships) reported 257 
CRP-associated DNA methylation sites (Infinium27k); the most significant CpG sites were 
near the KLK10, LMO2, and TM4SF4 genes, and genes associated with the immune 
response, with a single CpG-site, cg10636246 near gene AIM2 overlapping with the other 
EWAS studies described above (all Infinium450k).11  In addition to the above findings, higher 
levels of IL-6 has been associated with (hyper and hypo) methylation of USP2, TMEM49, 
among others.12-14  A review of the epigenome wide analysis and candidate gene studies 
summarize the genes associated with inflammation markers by pathways such as 
atherosclerosis, IL-6, IL-9, IL-8, growth hormones, and JAK/STAT signaling pathways.15   

 
All but two of the analyses described above8; 11 were performed in European-ancestry 

populations, with moderate sample sizes, highlighting the importance of examining 
inflammation-associated methylation sites in ancestrally diverse populations.  The two 
multiethnic studies only extended to African Ancestry and their reporting findings did not 
overlap.  It remains unknown whether the identified CpG-lipid associations could be 
generalized to Hispanic/Latinos and other racial/ethnic groups or replicated in African 
Americans.  Another research need moving forward is to improve the understanding of the 
role of CRP in disease risk.  As it is well established that CRP levels increase during 
infections and inflammatory disease, the development of therapeutic strategies directed 
toward cellular processes associated with increased CRP levels requires a deeper 
understanding of the molecular mechanisms across multi-ethnic populations.  Evaluating the 
role of the epigenome in disease risk and along the causal pathway of these complex 
diseases, could be valuable in understanding the specific cellular processes and pathogenic 
mechanisms, as well as racial/ethnic variation. 

 

III. OBJECTIVES AND PLAN  
 
a. Study Questions/Hypotheses.   

• To identify novel CpG sites associated with markers of inflammation in ancestrally 
diverse populations.  

• To explore the generalization and potential heterogeneity of the previously reported 
and newly discovered CpG sites by examining their effect sizes and association 
directions across ethnic groups.  

• To explore the modification effects of environmental/lifestyle covariates on CpG-
inflammation associations.  

• To infer the causality between differential methylation and the change of profiles of 
inflammation markers.  

 
 
b. Outcomes, Covariates, OMICs Data Considered. 
 
Outcomes (phenotype): Inflammation markers: CRP, IL-6, fibrinogen, and, possibly, D-dimer. 
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Covariates, as appropriate (main model): Age, sex, race/ethnicity, ancestry, study, center, 
family structure, white blood cell species, smoking, BMI, technical variables. 
 
Covariates (potential covariates in extended model): prevalent CHD, diabetes, 
hypertension, and lipid levels (TG, tChol, HDL, LDL), fasting glucose, fasting insulin, 
inflammation related disease (colitis, diverticulitis, pancreatitis; n~550), medication use (related 
to any of the above), and other identified covariates on CpG-inflammation associations.  
 
OMICS Data: Methylation data. DNA methylomic data is available in 11,093 individuals from 
whole blood assays and is drawn from Illumina arrays (the majority using the 450k array). 
 
 
c. Analytical Approach  
  

Before analysis, all CRP levels will be natural log transformed within each study, other 
inflammation biomarkers will be adjusted or transformed as appropriate. Individuals with > 4 
standard deviations from the cohort mean (transformed) value will be excluded from the 
analysis.  Beta values, which estimate the methylation level using a ratio of intensities between 
methylated and unmethylated alleles, will be used. These will be calculated and normalized 
using a Beta-MIxture Quantile dilation (BMIQ) approach. Any value with a detection p-value 
above 0.01 was set to missing (with detection p-values representing the likelihood of detection 
relative to background), and samples with more than 1.5% missing data were removed. 
Additionally, CpGs with greater than 1% missing data was excluded from the analysis.  Based 
on prior work, we will eliminate any CpGs where the probe sequence maps either to a location 
that does not match the annotation file or to more than one locus.  

 
In the methylome-wide association analyses, differentially methylated CpG sites will be 

evaluated for association with inflammation markers (i.e., phenotypes) using linear mixed effects 
regression with inflammation marker (e.g. CRP, transformed for normal distribution) as the 
dependent variable, and methylation B-values as the independent variable.  The multiethnic 
models will be adjusted for age, sex (as appropriate), ancestry (PC1-10), center/study site (if 
applicable), family structure (if applicable), proportion of white blood cell species (using the 
Houseman method estimates or direct measurements), and technical covariates (chip ID, chip 
position, batch, etc as random effect).  Smoking status and BMI will be included in the baseline 
model because these variables alter baseline CRP levels.4  Other potential confounders will be 
evaluated for newly identified and previously reported inflammation marker-associated CpG 
sites in an extension of the baseline model.  These may include (as available): inflammation 
related disease, prevalent diabetes, hypertension, CHD, and lipid levels (HDL, LDL, tChol, TG), 
and related medication use.  The summary statistics from different studies will be combined 
through inverse variance-weighted fixed-effect meta-analyses. Bonferroni corrections will be 
applied to these models where α=0.05/(number of CpG sites tested) in order to define 
significant CpG sites.  The effect size will be represented as the change in phenotype value 
(e.g. lnCRP) per 1-unit change in the beta estimate (model coefficient).  The genome 
coordinates provided by Illumina (GRCh37/hg19) will be used to annotate the CpG sites to loci. 
 

We will then perform race/ethnic-specific methylome-wide association analyses to 
explore the generalizability and heterogeneity of inflammation marker-associated CpG sites.  An 
examination of the association directions and effect estimates will be evaluated across ethnic 
groups. 
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To identify newly identified and previously reported inflammation marker-associated CpG 
sites that interplay with environmental/lifestyle covariates, we will perform 2-degree-of-freedom 
tests16 that jointly evaluate main effects (CpG sites) and interaction (CpG sites by 
environmental/lifestyle covariate) with the same adjustment applied in the main model.  We will 
explore sex as an interactive covariate, among other identified covariates as appropriate.  A 
previous analysis demonstrated significant heterogeneity in effect estimates between men and 
women at four genetic variants,5 although the effect estimates were all in the same direction.  
Tests of effect modification in methylation models by sex have been previously evaluated using 
sex-mDNA interaction terms in the multivariate models, but none have reported significant 
findings.10; 11  The joint meta-analysis of the main and interactive effects has higher power than 
an interaction regression model and, thus, ability to detect a significant interaction if one exists. 

 
In the Mendelian randomization analyses, we plan to use genetic variants as 

instrumental variables to determine whether differential methylation is consequential to the 
change of inflammation marker profiles or vice versa.  We will conduct two-sample MR in 
relation to inflammation markers.  For each analysis, estimates will be calculated primarily using 
inverse variance weighted regression methods which involve taking the ratio of the SNP-
outcome effect estimate to the SNP-exposure effect estimate.  Sensitivity analyses using MR-
Egger17 and weighted median18 models will also be performed to examine evidence for 
directional pleiotropy. 
 
d. Anticipated date of draft manuscript to P&P: __TBD_____ 
 
e.  What manuscript proposals listed on www.pagestudy.org/index.php/manuscripts/  are 
most related to the work proposed here?  Approved PAGE ms. numbers: ________  

 
– If any:  Have the lead authors of these proposals been contacted for comments 

and/or collaboration?  Yes__ No__  
 
IV. SOURCE OF DATA TO BE USED (Check all that apply) 
 
Study Name Included 
ARIC x 
HCHS/SOL  
CCHC  
MEC x 
BioME  
WHI x 
CARDIA  
MESA x 

 
 
 
I, _(initials)_, affirm that this proposal has been reviewed and approved by all listed 
investigators.  
 
* We suggest inclusion of PAGE coauthors from all participating studies. 
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Table 1. Summary of previously identified CpG sites associated with inflammation markers 
 

Inflammatory 
marker CpG site Chr Position Gene Reference 

mDNA and CRP cg12992827 3 101901234 . 9 
mDNA and CRP cg16936953 17 57915665 TMEM49 9 
mDNA and CRP cg18181703 17 76354621 SOCS3 9, 11 
mDNA and CRP cg12054453 17 57915717 TMEM49 9  
mDNA and CRP cg06192883 15 52554171 MYO5C 9  
mDNA and CRP cg18942579 17 57915773 TMEM49 9  
mDNA and CRP cg18608055 19 1130866 SBNO2 9  
mDNA and CRP cg20995564 2 145172035 ZEB2 9  
mDNA and CRP cg01409343 17 57915740 TMEM49 9  
mDNA and CRP cg17980786 3 32933637 TRIM71 9  
mDNA and CRP cg07573872 19 1126342 SBNO2 9  
mDNA and CRP cg10636246 1 159046973 AIM2 9, 12, 16 
mDNA and CRP cg06690548 4 139162808 SLC7A11 9  
mDNA and CRP cg05316065 8 130799007 GSDMC 9  
mDNA and CRP cg15551881 9 123688715 TRAF1 9  
mDNA and CRP cg26470501 19 45252955 BCL3 9, 11 
mDNA and CRP cg26804423 7 8201134 ICA1 9  
mDNA and CRP cg27184903 15 29285727 APBA2 9  
mDNA and CRP cg27469606 19 1154485 SBNO2 9  
mDNA and CRP cg02481950 16 21665002 METTL9 9  
mDNA and CRP cg26610247 8 142297175 . 9  
mDNA and CRP cg07094298 4 2748026 TNIP2 9  
mDNA and CRP cg27023597 17 57918262 MIR21 9  
mDNA and CRP cg19821297 19 12890029 . 9, 11 
mDNA and CRP cg02650017 17 47301614 PHOSPHO1 9  
mDNA and CRP cg15721584 3 181326755 SOX2OT 9  
mDNA and CRP cg03957124 6 37016869 . 9  
mDNA and CRP cg00851028 1 234905772 . 9  
mDNA and CRP cg21429551 7 30635762 GARS 9  
mDNA and CRP cg01059398 3 172235808 TNFSF10 9  
mDNA and CRP cg02341197 21 34185927 C21orf62 9  
mDNA and CRP cg15310871 8 20077936 ATP6V1B2 9  
mDNA and CRP cg26846781 17 61620942 KCNH6 9  
mDNA and CRP cg27637521 17 76355202 SOCS3 9  
mDNA and CRP cg02003183 14 103415882 CDC42BPB 9  
mDNA and CRP cg04523589 3 48265146 CAMP 9  
mDNA and CRP cg25325512 6 37142220 PIM1 9  
mDNA and CRP cg22749855 17 76353952 SOCS3 9  
mDNA and CRP cg02734358 4 90227074 GPRIN3 9  
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mDNA and CRP cg19769147 14 105860954 PACS2 9  
mDNA and CRP cg23761815 10 73083123 SLC29A3 9  
mDNA and CRP cg13585930 10 72027357 NPFFR1 9  
mDNA and CRP cg27050612 17 46133198 NFE2L1 9  
mDNA and CRP cg17501210 6 166970252 RPS6KA2 9  
mDNA and CRP cg15020801 17 46022809 PNPO 9  
mDNA and CRP cg12053291 12 125282342 SCARB1 9  
mDNA and CRP cg08548559 22 31686097 PIK3IP1 9  
mDNA and CRP cg18663307 21 46341389 ITGB2 9  
mDNA and CRP cg05575921 5 373378 AHRR 9  
mDNA and CRP cg09182678 22 50328711 . 9  
mDNA and CRP cg00812761 4 53799391 SCFD2 9  
mDNA and CRP cg00159243 12 109023799 SELPLG 9  
mDNA and CRP cg04987734 14 103415873 CDC42BPB 9 
mDNA and CRP cg06126421 6 30720080 . 9 
mDNA and CRP cg12269535 6 43142014 SRF 9  
mDNA and CRP cg24174557 17 57903544 TMEM49 9  
mDNA and CRP cg03128029 2 203143288 NOP58 9  
mDNA and CRP cg25392060 8 142297121 . 9  
mDNA and CRP cg02716826 9 33447032 SUGT1P1; AQP3 9 (discovery only), 11 
mDNA and CRP cg24204847 not reported not reported EEF2 17 
mDNA and CRP not reported NA NA LY86 18 
mDNA and CRP not reported NA NA SOCS-1 19 
mDNA and CRP not reported NA NA IL-6 20 
mDNA and CRP cg07073964 19 649371 KLK10 12 
mDNA and CRP cg09358725 11 33870664 LMO2 12 
mDNA and CRP cg04121771 3 150674314 TM4SF4 12 
mDNA and CRP cg08458487 10 81699171 SFTPD 12 
mDNA and CRP cg09305224 9 139047066 FUT7 12 
mDNA and CRP cg00645579 11 607140 IRF7 12 
mDNA and CRP cg05556717 7 75257240 CCL26 12 
mDNA and CRP cg17496921 19 11267993 TSPAN16 12 
mDNA and CRP cg03801286 21 34806378 KCNE1 12 
mDNA and CRP cg21969640 12 53043844 GPR84 12 
mDNA and CRP cg05501357 11 33264845 HIPK3 12 
mDNA and CRP cg03600318 10 81698971 SFTPD 12 
mDNA and CRP cg18084554 19 880046 ARID3A 12 
mDNA and CRP cg06625767 5 176769301 F12 12 
mDNA and CRP cg15248035 9 36159949 CCIN 12 
mDNA and CRP cg05546038 16 65764534 NOL3 12 
mDNA and CRP cg09303642 12 52977085 NFE2 12 
mDNA and CRP cg03330678 17 72827828 9-Sep 12 
mDNA and CRP cg17753124 19 13120872 IER2 12 
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mDNA and CRP cg22242539 17 1611970 SERPINF1 12 
mDNA and CRP cg17166812 1 159436198 NDUFS2 12 
mDNA and CRP cg22266967 4 6746599 S100P 12 
mDNA and CRP cg12380764 1 205037818 IL19 12 
mDNA and CRP cg10275770 17 59437937 ICAM2 12 
mDNA and CRP cg21492378 9 122890100 CEP1 12 
mDNA and CRP cg22381196 16 70598877 DHODH 12 
mDNA and CRP cg23140706 12 52975545 NFE2 12 
mDNA and CRP cg20283107 8 124858150 FAM91A1 12 
mDNA and CRP cg27606341 5 39255389 FYB 12 
mDNA and CRP cg26861460 22 42906788 PARVG 12 
mDNA and IL-6 cg26077811 not reported not reported USP2 21 
mDNA and IL-6 cg18942579 not reported not reported TMEM49 21 
mDNA and IL-6 cg12054453 not reported not reported TMEM49 21 
mDNA and IL-6 cg16936953 not reported not reported TMEM49 21 
mDNA and IL-6 cg05438378 not reported not reported SMAD3 21  
mDNA and IL-6 cg25446789 not reported not reported DTNB 21  
mDNA and IL-6 cg01409343 not reported not reported TMEM49 21  
mDNA and IL-6 cg13518625 not reported not reported . 21 
mDNA and IL-6 None NA NA NA 22 
mDNA and IL-6 not reported NA NA SOCS-1 19 
mDNA and IL-6 not reported NA NA IL-6 20 
mDNA and 
fibrinogen 

not reported NA NA LY86 18 

 
Table 1 references with brief description of study 
8Ligthart et al 2016, EWAS n=8,863 (Discovery, European ancestry [EA]) and 4,111 (Replication, 

African ancestry [AA]), Infinium450, 58 of 218 discovery CpG sites replicated in replication mega 
analysis 

10Marzi et al. 2016, EWAS n=1,741 (Discovery) and 503 (Replication), Infinium450, EA only 
11Sun et al. 2013, EWAS n=966, Infinium27; AA only (only top 30 of 257 significant CpG-sites listed; 

non-listed sites were cross-checked with findings from other studies, one site was replicated and is 
noted above (near AIM2 gene) 

19Miller et al. 2017, candidate gene n=286, Infinium450, mostly EA men, PTSD Veterans 
20Arpon et al. 2017, candidate gene n=36, Infinium450, EA, Mediterranean diet 
21Su et al. 2014, candidate gene n>1400, Infinium450, EA and AA, obesity, insulin resistance, 

inflammation 
13Lai et al. 2014, candidate gene n=46, Bisulfite method, ancestry not stated: maybe Taiwan (recruited 

from Taiwan hospital, all authors have Taiwan affiliations), ankylosing spondylitis 
14Uddin et al. 2011, candidate gene n=100, abstract only, depression 
12Smith et al. 2014, EWAS (baseline) then candidate gene (follow-up), n=61 then 39 women, 

Infinium450, EA and AA, breast cancer chemotherapy 
22Jhun et al. 2017, candidate gene n=822, Infinium27, AA, mDNA, smoking, and inflammation (MR 

study) 
 


